Finding Contractions and Induced Minors in Chordal Graphs via Disjoint Paths
نویسندگان
چکیده
The k-DISJOINT PATHS problem, which takes as input a graph G and k pairs of specified vertices (si, ti), asks whether G contains k mutually vertexdisjoint paths Pi such that Pi connects si and ti, for i = 1, . . . , k. We study a natural variant of this problem, where the vertices of Pi must belong to a specified vertex subset Ui for i = 1, . . . , k. In contrast to the original problem, which is polynomial-time solvable for any fixed integer k, we show that this variant is NP-complete even for k = 2. On the positive side, we prove that the problem becomes polynomial-time solvable for any fixed integer k if the input graph is chordal. We use this result to show that, for any fixed graph H , the problems H-CONTRACTIBILITY and H-INDUCED MINOR can be solved in polynomial time on chordal graphs. These problems are to decide whether an input graph G contains H as a contraction or as an induced minor, respectively.
منابع مشابه
Efficient algorithms for minimal disjoint path problems on chordal graphs
Disjoint paths have applications in establishing bottleneck-free communication between processors in a network. The problem of finding minimum delay disjoint paths in a network directly reduces to the problem of finding the minimal disjoint paths in the graph which models the network. Previous results for this problem on chordal graphs were an O(| V | | E |) algorithm for 2 edge disjoint paths ...
متن کاملContractions of Planar Graphs in Polynomial Time
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملEdge Disjoint Paths in Moderately Connected Graphs
We study the Edge Disjoint Paths (EDP) problem in undirected graphs: Given a graph G with n nodes and a set T of pairs of terminals, connect as many terminal pairs as possible using paths that are mutually edge disjoint. This leads to a variety of classic NP-complete problems, for which approximability is not well understood. We show a polylogarithmic approximation algorithm for the undirected ...
متن کاملList matrix partitions of chordal graphs
It is well known that a clique with k + 1 vertices is the only minimal obstruction to k-colourability of chordal graphs. A similar result is known for the existence of a cover by cliques. Both of these problems are in fact partition problems, restricted to chordal graphs. The first seeks partitions into k independent sets, and the second is equivalent to finding partitions into cliques. In an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011